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SUMMARY 

A numerical method for the solution of the vector potential/vorticity vector formulation of the transient, 
fully three-dimensional Navier-Stokes energy and continuity equations has been applied to simulate the 
development of natural convective flow within a ‘box’ after a sudden temperature change on a vertical 
portion of the wall. Only one cavity size has been considered, this having a vertical height of three times its 
width and a horizontal length of six times its width. A single heated rectangular hot spot or ‘element’ on an 
otherwise adiabatic wall is centred between the vertical end walls. The opposite vertical wall is held at the 
intial fluid temperature, and all other walls are assumed to be adiabatic. Fluid properties have been assumed 
constant except for the density change with temperature that gives rise to the buoyancy force. The numerical 
method is an underrelaxation Gauss-Seidel method using finite differencing at each time step. Solutions have 
been obtained for a Prandtl number of 0.71, for Rayleigh numbers, based on the width, of between 0 and 
100000 and for a number of heated element locations and sizes. 

INTRODUCTION 

The present work involves a numerical study of three-dimensional unsteady natural convective 
flow and heat transfer within a rectangular cavity or ‘box’ which has one vertical side partially 
heated and the opposite vertical side kept at a lower uniform temperature. Only one cavity size 
has been considered, this being shown in Figure 1. A single heated hot spot or element is 
symmetrically located about the vertical centreline of the partially heated wall as indicated in 
Figure 2. It has been assumed that the fluid in the cavity is initially at a uniform temperature 
and motionless. Then, at time zero, a rectangular portion of one vertical wall is heated to a 
uniform temperature which is higher than the initial fluid temperature, while the opposite vertical 
wall is kept at the initial fluid temperature, the remaining wall surfaces being assumed to be 
adiabatic. The effect of the heated element location and of Rayleigh number on the heat transfer 
rate from the elements has been considered. A comparison with corresponding two-dimensional 
results has also been made. A fully heated vertical wall case in a 2 x 1 x 1 enclosure has briefly been 
considered in order to compare the results given by the present method with previous results. 

Three-dimensional natural convective flow in a cavity has recently received increased attention. 
A number of procedures have been developed to solve three-dimensional natural convective 
problems, either solving the primitive or vector potential/vorticity vector formulation of the 
governing equations. Most available studies have been concerned with the case where the bottom 
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Figure 2. Heated element configuration 

i 
wall of the cavity is uniformly heated; e.g., see References 1-5. Three-dimensional natural 
convective flow in a cavity with the vertical walls heated to different temperatures has been 
investigatzd by Mallinson and de Vahl Davis6 and more recently by Viskanta et ale7 and Yang 
et ~ l . , ~  a transient solution for this case being given by Chan and Banerjee.g No solutions for 
transient three-dimensional natural convective flow in a rectangular cavity with one partially 
heated vertical wall appear to be available. Since, as discussed below, this situation is of some 
practical interest, the present study was undertaken. 

The motivation for the present study stems from the fact that circuit boards on which electronic 
components are attached are often mounted in what can be approximately modelled as a 
rectangular cavity. Now the performance and life of microelectronic components are strongly 
temperature-dependent and for proper operation they must be maintained within a specific 
temperature range.” Following start-up, the natural convective heat transfer from a heated 
vertical surface may be expected to pass through a number of minima and maxima before a 
steady state is achieved. Hence the transient development of the heat transfer rate may be of 
importance in the natural convective cooling of electronic equipment. It is also to be expected 
that the end wall effects and the effects of the finite width of the heated element may influence 
the heat transfer rates both during the transient state and in the steady state. A transient, fully 
three-dimensional solution has therefore been investigated in the present study. 
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GOVERNING EQUATIONS 

The study is based on the use of the unsteady three-dimensional Navier-Stokes, energy and 
continuity equations. It has been assumed that dissipation is negligible and that the fluid properties 
are constant except for the density change with temperature that gives rise to the buoyancy 
force, this being treated by the Boussinesq approximation. 

The vector potentiallvorticity vector formulation of the governing equations has been 
considered, where, as usual, the vector potential and vorticity vector are defined as follows: 

The following dimensionless variables are then introduced: 

where denotes a dimensional quantity. 
In terms of these variables the governing equations are 

aT + RaPr--,  
aY 

(7) 
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aT auT auT awT 
at ax ay az Pr-  + __ + __ +- 

=($+$+$), 

The boundary conditions 
description. On all walls 

while for the heated wall 
respectively 

on velocity and temperature follow directly from the problem 

(12) u = 0 = w = 0, 

section, the cooled wall and all the adiabatic wall sections 

As shown by Hirasaki and Hellums," the vector potential boundary conditions on the 
end walls, i.e., at x = 0 and 6,  are 

-= a*X *, = * z  =o. 
ax 

Similar conditions apply on the other wall pairs, i.e., at y = O  and 1 and z = O  and 3. The 
conditions given in equation (14) will also apply on the plane of symmetry, i.e., on the yz plane 
at x = 3. 

The vorticity at the wall can be determined from the vector potential; e.g., at x = 0 

On the yz plane at x = 3 the following boundary conditions also apply: 

a u  aw aT 
u = - = - = o  - = 0, 

ax ax ax 
84, 

- *)$ = *, = 0, -= 4, = (bz = 0. a*, 
ax ax 
-- 

The initial conditions are 

SOLUTION PROCEDURE 

In the above equations the spatial derivatives have been approximated by second-order central 
differencing at all internal points and by second-order forward or backward differencing at points 
on the solid boundaries and on the plane of symmetry. All time derivatives have been 
approximated by first-order backward differencing. The resulting equations were then solved using 
an underrelaxation Gauss-Seidel technique with iteration at each time step. The solution 
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procedure adopted here for the three-dimensional flow is basically an extension of the procedure 
developed in Reference 12 for two-dimensional problems and broadly similiar to that used in 
Reference 13. 

Hence equations (4)-( 17) can be written in the following form: 

Gi, j ,k  = Gi+ 1, j .k  + a2 G i -  l , j , k  + a3 G i , j +  l , k  + a 4 G i , j -  1 ,k  -k a5 G i , j , k +  1 + a6 Gi, j ,k-  1 $- a7 = Fn, (I9) 
where G represents any of u, v,  w, T, ll/i or 4i and some of the coefficients are zero for points on the 
boundary. Equation(15) is simplified using the zero-velocity condition at the wall and the 
definition of $i before being written in the form of equation (19). Since a transient problem is being 
considered, the coefficient a,, for cases where G represents T or c$i, includes the contribution of the 
G i , j , k  at the beginning of the time step. Equation (19) written in the form 

G:,j,k = G:+ 1, j .k  + w n ( F : )  (20) 
in applied to all points, where w, is a relaxation factor, F,  represents the right-hand side of 
equation (19) and superscripts 0 and 1 indicate conditions at the beginning and the end of the 
iteration step respectively. The fluid variables are determined by systematically applying 
equation (ZO), using the latest calculated values, along points in a row, then along successive rows 
in a plane and finally along successive planes within the volume. 

Equation (20) forms the basis of the solution procedure. At time zero, the conditions at all 
internal points are given by the initial conditions given in equation (18). In advancing to time At, 
these conditions are taken as the ‘first guess’ at conditions at this time at all internal points. The 
boundary conditions known at time At are also set. The solution procedure then advances 
essentially as follows: 

The internal temperature values are determined. 
Unknown temperature values on the boundaries are determined. 
The above steps are repeated a second and third time. (The repetition of the above steps is 
discussed more fully below.) 
Internal vorticity vector values are determined. 
Unknown vorticity vector values on the boundaries are determined. 
Steps (iv) and (v) are repeated a second and third time. 
Internal vector potential values are determined. 
Unknown vector potential values on the boundaries are determined. 
Velocity values are determined. 
Steps (vii)-(ix) are repeated a second and third time. 
Convergence of the value of the temperature is checked. 
If convergence is not achieved, step (i)-(xi) are repeated until convergence. 
This gives the solution at the end of the time step. 

This solution was advanced through the next time step using the same procedure and so on. 
At the end of each time step the local transfer rates over the heated element are derived from the 

temperature distribution using second-order differencing. The average heat transfer rate from the 
heated element was then determined by numerically integrating the local heat transfer rates over 
the heated element using Simpson’s rule. The boundary of the heated element was taken as halfway 
between the grid points with boundary conditions T = 1 and dT/ay  = 0. 

The repeated calculation of the cycle of each fluid variable field before beginning the solution of 
the next field has been implemented within the procedure to aid convergence while using a 
relatively large time step, i.e., At = 0.0005. Test runs of the procedure using a different number of 
cycles per solution indicate that three cycles per solution of each field optimally aids convergence at 
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each time step. The results from test runs using more than three cycles closely agree with the three 
cycle results, but these solutions require more time to converge. At least three cycles per solution 
were needed while using a dimensionless time step of 0.0005, it being found that results using 
fewer cycles disagree sharply with the three-cycle results. 

The above procedure was solved using an IBM3081. Typically the transient solution of the 
governing equations from the initial conditions to the assumed steady state, t = 0.4, required 5000 
iterations for a Rayleigh number range of between 0 and 100000. Between 3 and 18 iterations were 
required for convergence at each time step, with each iteration requiring approximately 3.8 CPU 
seconds. 

RESULTS 

The solution has as parameters: 

(i) the Rayleigh number Ra which is based on the width W' of the cavity; 
(ii) the dimensionless position of the heated element as defined by (R ,  S )  (see Figure 2); 
(iii) the dimensionless size of the heated elements as defined by (L, H )  (see Figure 2); 
(iv) the Prandtl number P r  of the fluid in the cavity; 
(v) the relative dimensions of the cavity. 

As already mentioned, results have only been obtained for a cavity of size 6 x 1 x 3 as defined 
in Figure 1. A single dimensionless element size of (L, H) = (0-716,0.333) has been considered, 
elements being centred between the adiabatic end walls at x = 3. These results have only been 
obtained for Pr = 071. The convergence criterion at each time step was I T" 1 < 0005, 

where n denotes the iteration number. 22 x 15 x 37 uniformly spaced grid points were used. 
In studying the dependence of the results on grid size, attention was directed to the mean 

temporal Nusselt number extrema values (see later) for a centrally located element. The results 
were found to be most sensitive to the grid size in the x direction. Hence three grids differing in size 
in the x direction were considered, and from these results extrapolated extrema results for a zero 
grid size were determined and compared with the results determined using the 22 x 15 x 37 grid. 
The extrema results were found to occur at dimensionless times that agreed to within 3% of each 
other, and the Nusselt numbers at these extrema values agreed to within 3% of each other. 

A comparison of the present results with the corresponding two-dimensional results and with the 
steady state results of Mallinson and de Vahl Davis6 is of interest. In this problem a cavity of size 
2 x 1 x 1 has been considered. The variation of the dimensionless heat transfer rate Nu and the 
absolute maximum values ($i(max of the components of the vector potential with dimensionless 
time are given in Figures 3 and 4 respectively. If the variations of the flow quantities in the x 
direction are negligible, a two-dimensional flow will of course exist in the cavity. It may be shown 
that under the two-dimensional assumption the y and z components of the vector potential become 
zero and the x component becomes identically the stream function used in the two-dimensional 
analysis. Hence the difference between the variation of ImaX and I $ 2 D ( m a x  shown in Figure 4 
illustrates the influence of the end walls on the fluid flow. Figure 3 shows that two- and three- 
dimensional results for the variation of N u  with time agree closely. The largest differences in N u  
values occur at early times. During this period the fluid motion is largely parallel to the unheated 
end walls, i.e., there is little fluid motion in the x direction. However, the fluid is slowed by the 
end walls, which accounts for the lower N u  values predicted for the three-dimensional case as 
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Figure 3. Nusselt number variation with dimensionless time for the two- and three-dimensional case of a fully heated 

vertical wall within a cavity of size 2 x 1 x 1 
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Figure 4. Variation of the absolute maximum value of the components of the vector potential with dimensionless time for 

the two- and three-dimensional case of a fully heated vertical wall within a cavity of size 2 x 1 x 1 

compared with the two-dimensional results. As time progresses, fluid motion in the x direction 
becomes more intense, as may be seen by the strengthening of the absolute maximum values of the 
y and z components of the vector potential, and as a consequence the two- and three-dimensional 
variations of N u  with time become essentially the same. From Figures 4 and 5 it may be seen that at 
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Figure 5.  Variation of the absolute value of the Nusselt number with the inverse of the dimensionless time for the three- 
dimensional case of a fully heated vertical wall within a cavity of size 2 x 1 x 1 

a dimensionless time of t  = 0.4 the steady state has not quite yet been reached; however, it may be 
expected that at this time the INu,l is close to the steady state value. INu,l is defined as the absolute 
value of the average heat transfer rate from an entirely heated hot or cold wall. The variation of 
/Nu,/ with l / t  shown in Figure 5 predicts that the average heat transfer rate at the cold wall will 
become greater than at the hot wall for a period of time. The heat transfer rates from the hot and 
cold walls are expected to converge; however, a decaying oscillation about the final steady state 
value is not unexpected. Mallinson and de Vahl Davis6 predicted an average heat transfer rate over 
the entire wall of 220 i.e., /Nu,/ = 2.20, and an average heat transfer rate along the heated wall's 
vertical centreline of 2.32. These results compare with values predicted at t = 0.4 of 2.41 and 2.51, 
it being noted that the differences between the two heat transfer rates are approximately the same. 

The case where only a portion of the vertical wall is heated will be considered next. The heated 
element lies symmetrically on the centreline of the vertical wall, i.e., is centred between the end 
walls. The flow, as mentioned before, is therefore symmetrical about the vertical centre plane. The 
effect of the heated element location and Rayleigh number on the variation of N u  with 
dimensionless time is shown in Figures 6-9. From these figures it is clear that the three- 
dimensional transition to steady state, for heated elements not located near horizontal walls, 
consists of five distinct phases, namely: 

(i) a conduction phase where N u  decreases quickly from an initial infinite value to a temporal 
minimum; 

(ii) a short phase where N u  increases to a temporal maximum as fluid motion in the yz plane 
intensifies; 

(iii) another short phase where N u  decreases to a less distinct temporal minimum as fluid 
motion in the yz plane weakens and the fluid becomes warmer; 

(iv) a longer phase where N u  increases to a local temporal maximum lower than the initial 
maximum as three-dimensional flow becomes important; 

(v) a phase where Nu slowly decreases, approaching the final steady state value. 
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Figure 6. Comparison of the effect of Rayleigh number on the Nusselt number variation with dimensionless time for two- 

and three-dimensional cases, element size L x H = 0.716 x 0.333 and element position (R,S)  = (3,l) 
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Figure 7. Comparison of the effect of position, as defined in Figure 2, on the Nusselt number variation with dimensionless 

time for Ra = lo4 and element size L x H = 0.716 x 0.333 

In Figures 6-9 the broken lines show the two-dimensional results, obtained from Reference 14, 
which correspond to the three-dimensional cases that have been considered. In these figures it may 
be seen that in most cases considered the steady value of Nu is higher in the three-dimensional case 
than in the two-dimensional case. 
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Figure 8. Comparison of two- and three-dimensional Nusselt number variations with dimensionless time for Ra = lo4, 

element size L x H = 0.716 x 0.333 and element position (R, S )  = (3 , l )  
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Figure 9. Transient development of the Nusselt number and the absolute maximum value of the components of the vector 

potential for Ra = lo4, element size L x H = 0716 x 0.333 and element position (R,  S )  = (3,l) 
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As mentioned above, these five phases describe the transition to steady state for the three- 
dimensional cases where the heated element is not located near the horizontal walls. The variation 
of N u  with dimensionless time is more complex in the three-dimensional case than in the two- 
dimensional case, because in the former case the development of the motion in the x direction of 
course influences the variation. Figure 9 illustrates the influence of the fluid motion in the x 
direction on N u  for the three-dimensional case considered in Figure 8. Here the transient 
behaviour of N u  and the absolute maximum values of the three components of the vector potential 
are shown. The values of ( $ y l m a x  and /$,~,,, are not negligible with respect to indicating 
strong fluid motion in the x direction. l $ y J m a x  and )$,),,, reach maximum values as N u  reaches its 
second temporal maximum, implying that fluid motion in the x direction accounts for the second 
maximum N u  value and, as would be expected, enhances heat transfer. 

The effect of the heated element location, i.e., the influence of the horizontal walls, on the 
variation of N u  with time is illustrated by Figure 7. It will be recalled that the dimensionless 
position of the heated element is defined by (R, S) (see Figure 2), where R is the horizontal distance 
from the end wall at x = 0 and S is the vertical distance from the bottom. All results for heated 
elements located at least two element heights away from the horizontal walls closely coincide with 
each other and are essentially the same as those given by the curve for position (3,l) shown in this 
figure. The variation of the heat transfer rate with the element located outside of this range, 
however, is strongly influenced by the heated element location. Heated elements located near the 
top, e.g., position (3.00,2.75), experience no temporal maximum Nu. Here there is little fluid 
motion, since the fluid heated by the elements is unable to rise and hence heat transfer progresses 
mainly by conduction. The transient heat transfer development is not as strongly effected when the 
element is located near the bottom wall. However, as can be noted from the curve for position 
(3.00,0.25), the heat transfer is somewhat lower than for an element located far from any wall, this 
being due to the restriction of fluid entrainment resulting from the presence of the bottom wall. The 
curve for position (3.00,2.33) further emphasizes that the variation of N u  with time is largely 
unaffected by the location of the heated element except when the element is located close to a 
horizontal wall, in particular located close to the top wall. 

Attention is next turned to the distribution of the local heat transfer rate over the surface of the 
heated element, this local heat transfer rate being expressed as a local Nusselt number Nu, also 
based on the cavity width W'. The variation of Nu, over the surface of an element that is located 
relatively far from any of the cavity walls is shown in Figure 10 for times that correspond to the 
extrema in the average Nusselt number variations with time. At all times Nu,  is a maximum at the 
bottom of the heated element and a minimum at the top of the element. In all cases there is also an 
increase in the local heat transfer at the edges of the heated element, the distribution of Nu,  at the 
initial temporal minimum N u  indicating that side effects are already important at this time. Hence 
three-dimensional effects enhance the heat transfer rate at the sides of the element. These three- 
dimensional effects become more important after the initial minimum N u  indicated by the steeper 
constant heat flux lines in Figures 10(b)-(e). The local heat transfer rate results confirm an earlier 
observation that there is little change in N u  with time following the initial temporal maximum, the 
changes after this time being restricted to the bottom corners of the heated elements. 

The effect of Rayleigh number on the effectively steady state Nu, distribution for a heated 
element not located near a horizontal or side wall is given in Figure 11. In all cases, except of course 
for pure conduction, Nu, is again a maximum at the bottom and a minimum at the top and 
increases near the edges of the elements due to three-dimensional effects. As would be expected, as 
Ra increases, the portion of the element over which these three-dimensional effects are important 
decreases; i.e., three-dimensional effects become less important and Nu, becomes increasingly 
uniform over the element at the larger Ra values. 



380 D. KUHN AND P. H. OOSTHUIZEN 

t = 0.0165 

(a )  

CONSTANT HEAT FLUX LINES 

t = 0.0515 

(b) 

t = 0.0880 

( C )  

t = 0.1410 

(d) 

t = 0.4000 

(el 

5.0 
6.0 
7.0 
8.0 
9.0 
10.0 

6.0 
7.0 
8.0 
9.0 
10.0 
11.0 

6.0 
7.0 
8.0 
9.0 

10.0 
11.0 

6.0 
7.0 
8.0 
9.0 
10.0 
11.0 

6.0 
7.0 
8.0 
9.0 

10.0 
11.0 

Figure 10. Transient development of the distribution of local heat transfer rate over the element for Ra = lo4, element size 
L x H = 0.716 x 0.333 and element position (R, S )  = (3,l) 

The distribution of Nu,, is more strongly influenced by the position of the heated element than 
is the N u  distribution, typical distributions being given in Figure 12. A typical N u ,  distribution for 
elements located aw5y from the horizontal walls is given Figure 12(b). The influence of the top wall 
is shown in Figure 12(a). As discussed earlier, when the element is near the top wall the heat transfer 
is mainly by conduction. As will be seen from Figure 12(a), the effect of the top wall is to reduce the 
local heat transfer rate and to reduce the three-dimensional effects. The local heat transfer 
distribution for an element located near the bottom wall is considered finally and is of most interest. 
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Figure 11. Effect of Rayleigh number on the distribution of local heat transfer rate over the element for dimensionless time 
at t = 0,4000, element size L x H = 0.716 x 0.333 and element position ( R , S )  = (3,l) 

In this case Nu,  is almost uniform across the element, and the constant heat flux lines are vertical. 
The distinctive Nu,  distribution is due to the orientation of the fluid motion. Fluid entrained to 
cool the heated element must come forward and up and move strongly towards the vertical centre 
of the element. Results from a two-dimensional analysis differ most strongly from this three- 
dimensional case, since a two-dimensional analysis can only predict a Nu, distribution with 
horizontal constant heat flux lines. 

The influence of element position on fluid motion within the enclosure is further illustrated in 
Figure 13 by considering the variation of the maximum absolute value of the components of the 
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Figure 12. Effect of element position on the distribution of local heat tranisfer rate over the element for dimensionless time 
at t = 0,4000, Ra = lo4 and element size L x H = 0.716 x 0333 

vector potential with time. Figure 13(a) compares the variation of lt+bxlmax with time at different 
element locations. Here it is seen that l$xlmax is retarded by the presence of the horizontal walls. In 
Figure 13(b) it is shown that the values of I $ y l m a x  become larger for the element located at the 
bottom than for the centrally located element. This supports the earlier observation that fluid 
motion in the x direction plays a more important role in the heat transfer from an element located 
near the bottom. A comparison of the variation of 1$,1,,, with time given in Figure 13(c) with that 
of l $ x l m a x  and I $ y l m a x  indicates l $ z / m a x  is essentially negligible with respect to l $ x / m a x  
and I $ y l m a x  for elements not located near the top wall. The relative weakness of the vector 
components for the element located near the top wall in comparison with the results for elements 
located away from the top wall indicates, as was noted earlier, that the heat transfer from 
elements located near the top progresses mainly by conduction. 

CONCLUSIONS 

A two-dimensional solution procedure has been extended to solve the fully three-dimensional 
Navier-Stokes, energy and continuity equations. The solution procedure has been successfully 
applied to simulate the development of natural convective flow within a ‘box’ after a sudden 
temperature change on a vertical wall portion. 
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Figure 13. Effect of element position, as defined in Figure 2, on the transient development of the maximum absolute value 

of the components of the vector potential for Ra = lo4 and element size L x H = 0-716 x 0.333 

The results indicate that: 

(i) For elements located away from the horizontal walls, the initial temporal minimum average 
heat transfer rate is less than the steady state value for all Rayleigh numbers considered 
here. 

(ii) The variation of the average heat transfer rate with time is little affected by element position 
unless the element is located close to a horizontal wall. 

(iii) The three-dimensional flow tends to increase the local heat transfer rate near the edges of 
the element, causing the mean heat transfer rate to be higher than that in the corresponding 
two-dimensional flow. 

(iv) The three-dimensional analysis predicts a significantly different local Nusselt number 
distribution for an element located near the bottom wall than that predicted by a two- 
dimensional analysis. 
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NOMENCLATURE 

Domain of heated element 
Right-hand side of Equation (19) 
Height of heated element 
Dimensionless height of heated element ( = H ' / W ' )  
Thermal conductivity 
Width of heated element 
Dimensionless width of heated element I: = L'/W') 
Local Nusselt number (q,,,W'/k(T;, - Tc)) 
Average Nusselt number from the heated element based on W((l /LH)  
!,Nu, dx dz) 
Absolute value of the average Nusselt number from the entirely heated hot or 
cold wall based on W'((1/2W2)S~S~Nu,dxdz) 
Pressure 
Prandtl number 
Local heat transfer rate at the wall ( -  kaT' /dy ' )  
Distance of heated element from end wall in x direction (see Figure 2) 
Dimensionless distance of heated element from end wall in x direction ( = R'/W') 
Rayleigh number 
Distance of heated element from bottom (see Figure 2) 
Dimensionless distance of heated element from bottom ( =  S/W')  
Temperature 
Dimensionless temperature (see equation (3)) 
Time 
Dimensionless time ( = t'v/W2) 
Velocity components in x', y', z' directions 
Dimensionless velocity components in x, y ,  z directions ( = u' W'/a,  u' W'/a, 
w' W'/a) 
Distance between heated walls 
Cartesian co-ordinates as defined in Figure 1 
Dimensionless Cartesian co-ordinates ( = x'/W', y'/  W', z'/W') 
Thermal diffusivity 
Kinematic viscosity 
Vorticity vector components (see equation (2)) 
Dimensionless vorticity vector components (see equations (4)-(6)) 
Vector potential components (see equation (1)) 
Dimensionless vector potential components (see equation ( 11)) 
Maximum absolute value of x component of the vector potential 
Maximum absolute value of y component of the vector potential 
Maximum absolute value of z component of the vector potential 
Maximum absolute value of the stream function 



Subscripts 

H 
C 
L 

TRANSIENT THREE-DIMENSIONAL FLOW 

Condition at the hot wall 
Condition at the cold wall 
Local condition 
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